THE NATURE OF THE PEPTIDES RELEASED FROM CANINE FIBRINOGEN

A. J. Osbahr, Jr., R. W. Colman*, K. Laki, J. A. Gladner

National Institute of Arthritis and Metabolic Diseases National Institutes of Health, U. S. Public Health Service Bethesda, Maryland

Received January 3, 1964

When canine fibrinogen is acted upon by canine thrombin, three large acidic peptides can be isolated. In this communication, we wish to report the amino acid composition and to propose sequences for two of these peptides.

Purified canine fibrinogen was reacted with canine thrombin and the liquor was carefully separated from the resulting clot. The clot liquor was concentrated and then deproteinized by the addition of trichloroacetic acid at 0°C. The last traces of trichloroacetic acid were removed from the supernatant containing the peptides by a cold continuous liquid-liquid extraction with ether. The peptide mixture was separated and purified by chromatography on DEAE-cellulose with a linear gradient between 0.225 M and 0.300 M potassium acetate buffer at pH 4.5. Three peptides were isolated. Two of these peptides were hydrolyzed with 5.7 N hydrochloric acid at 110°C. for 24, 48 and 72 hours and analyzed on an automatic amino acid analyzer. The results are shown in Table I. These two peptides contain the same sixteen amino acid residues; however, they differ in mobility on high voltage paper electrophoresis at pH 3.5. The peptide which moved more slowly toward the cathode contained one mole of phosphate per mole of peptide, whereas the faster moving peptide was free of phosphate. The phosphate was deter-

^{*}Clinical Associate, National Heart Institute

mined to be covalently bound to the serine residue of the peptide as O-phospho-serine (Osbahr et al., 1963A). The two canine peptides are thus analogous to the two human peptides α and β (Osbahr et al., 1963B) which have identical amino acid analysis and differ by the substitution in the α -peptide of 0-phospho-serine for serine. Therefore, we designate the canine peptide which possesses phosphate as the α -peptide and the peptide without phosphate as the β-peptide. Table I shows a comparison of the amino acid analysis of the α and β -peptides of both canine and human origin. The human and the canine peptides both contain sixteen amino acids. The canine peptides have one less aspartic acid and one more glutamic acid than their human counterpart. Leucine in the human peptides is replaced by isoleucine in the canine peptides. The canine peptides have one less glycine and alanine than do the human peptides, but they contain one threonine and one lysine, which are not present in the human peptides. Aside from these differences, the canine α and β -peptides possess a striking resemblance to their respective human peptides. The peptides of human and canine species are the only ones investigated to date which contain O-phospho-serine. The peptides examined previously, such as the bovine (Folk et al., 1960), were shown to contain tyrosine-O-sulfate.

The C-terminal amino acid residue of both the α and β -canine peptides was shown to be arginine as determined by the use of a purified carboxypeptidase-B. Once again thrombin exhibits its unique specificity of hydrolyzing an arginyl-glycyl bond (Blomblick et al. 1963) in which arginine contributes its C-terminal. The N-terminal residue of the canine peptides was shown to be threenine as determined by the phenyl isothiocyanate method (Edman, 1950).

	Canine				Human	
	μ mole	∑ Number of		Number of	<u>α</u>	<u>B</u>
	<u>ratio</u>	Residues	<u>ratio</u>	Residues	Number of	Residue
Aspartic Acid	0.254	1	0.250	1	2	2
Threonine	0.240	1	0.211	1	-	-
Serine	0.228	1	0.202	1	1	1
Glutamic Acid	0.752	3	0.611	3	2	2
Glycine	1.010	4	0.840	4	5	5
Alanine	0.258	1	0.213	1	2	2
Valine	0.248	1	0.230	1	1	1
Isoleucine	0.260	1	0,193	1	-	-
Leucine	-	•	-	-	1	1
Phenylalanine	0.250	1	0.190	1	1	1
Lysine	0.248	ı	0.186	1	-	-
Arginine	0.244	1	0.181	1	1	1
Phosphate	0.245	1	0	0	1	0
Ammonia	0.508	2	0,402	2	-	-

The proposed amino acid sequences of the α and β -canine peptides as determined by the use of proteolytic enzymes and the Edman method are shown in Figure I.

A detailed report concerning the sequences will be presented in a forth coming publication. The third peptide from the canine system is currently being characterized.

Figure I

Proposed amino acid sequences of the α and β -canine peptides.

 $^{\mathrm{PO}_{3}\mathrm{H}_{2}}_{0}$ $^{\alpha ext{-peptide}}$

H-Thr-Asp-Ser-Glu-Gly-Lys-Glu-Phe-Ileu-Ala-Glu-Gly-Gly-Gly-Val-Arg-OH

β-peptide

NH₂

H-Thr-Asp-Ser-Glu-Gly-Lys-Glu-Phe-Ileu-Ala-Glu-Gly-Gly-Gly-Val-Arg-OH

<u>Acknowledgements</u>

The authors wish to thank Mrs. P. Murtaugh and Mr. Samuel Patsy for their able assistance.

References

Blombäck, B. and Henschen, A. (1963). Klinische Wochenschrift, Jg. 41, Heft 2, 78-83.

Edman, P., (1950). Acta Chem. Scand., 4, 283.

Folk, J. E. and Gladner, J. A. (1960). Biochim. Biophys. Acta, 44, 383-385.

- (A) Osbahr, A. J., Gladner, J. A. and Laki, K., (1963). Biochem. Biophys. Res. Comm., 13, 462-465.
- (B) Osbahr, A. J., Gladner, J. A. and Laki, K., (1963). Biochem. Biophys. Acta, in press.